Home
Class 11
MATHS
If ""^(4)P2= n.""^(4)C2. Find the value...

If ` ""^(4)P_2= n.""^(4)C_2.` Find the value on f.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given that \[ 4P2 = n \cdot 4C2 \] ### Step 1: Write the formulas for permutations and combinations. The formula for permutations \( nPr \) is given by: \[ nPr = \frac{n!}{(n-r)!} \] And the formula for combinations \( nCr \) is given by: \[ nCr = \frac{n!}{r!(n-r)!} \] ### Step 2: Calculate \( 4P2 \). Using the permutation formula: \[ 4P2 = \frac{4!}{(4-2)!} = \frac{4!}{2!} \] Calculating \( 4! \): \[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] So, \[ 4P2 = \frac{24}{2!} = \frac{24}{2} = 12 \] ### Step 3: Calculate \( 4C2 \). Using the combination formula: \[ 4C2 = \frac{4!}{2!(4-2)!} = \frac{4!}{2! \cdot 2!} \] We already know \( 4! = 24 \) and \( 2! = 2 \): \[ 4C2 = \frac{24}{2 \cdot 2} = \frac{24}{4} = 6 \] ### Step 4: Substitute the values into the equation. Now we have: \[ 12 = n \cdot 6 \] ### Step 5: Solve for \( n \). To find \( n \), we divide both sides by 6: \[ n = \frac{12}{6} = 2 \] ### Conclusion Thus, the value of \( n \) is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 4C_1 - 2C_2

If .^(n)P_(4): .^(n)P_(5) = 1:2 , find the value of n.

If .^(35)C_(n+7)=.^(35)C_(4n-2) then find the value of n.

If P(n ,4)=20xxP(n ,2), then find the value of n

If alpha=\ \ ^4 C_2,\ then find the value of \ ^(alpha)C_2dot

If the coefficients of 2nd, 3rd and 4th terms in the expansion of (1+x)^(2n) are in A.P. Then find the value of n .

If \ ^n P_4=360 ,\ find the value of ndot

If sum_(n=0)^oo2cot^(-1) ((n^2+n-4)/2)=kpi then find the value of k

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

If a + b + c = 0 and a^(2) + b^(2) + c^(2) = 4, them find the value of a^(4) + b^(4) +c^(4) .