Home
Class 11
MATHS
Find the coordinate of the foci, coordin...

Find the coordinate of the foci, coordinate of the vertices, eccentricity and the length of the latus rectum of the hyperbola
`16x ^(2) - 9y ^(2) =576`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the hyperbola given by the equation \(16x^2 - 9y^2 = 576\). We will find the coordinates of the foci, the coordinates of the vertices, the eccentricity, and the length of the latus rectum step by step. ### Step 1: Rewrite the equation in standard form We start with the equation: \[ 16x^2 - 9y^2 = 576 \] To convert it to standard form, we divide the entire equation by 576: \[ \frac{16x^2}{576} - \frac{9y^2}{576} = 1 \] This simplifies to: \[ \frac{x^2}{36} - \frac{y^2}{64} = 1 \] Thus, we can identify \(a^2 = 36\) and \(b^2 = 64\). ### Step 2: Find the values of \(a\) and \(b\) From the values of \(a^2\) and \(b^2\): \[ a = \sqrt{36} = 6 \] \[ b = \sqrt{64} = 8 \] ### Step 3: Calculate the eccentricity \(e\) The eccentricity \(e\) of a hyperbola is given by the formula: \[ e = \sqrt{1 + \frac{b^2}{a^2}} \] Substituting the values of \(b^2\) and \(a^2\): \[ e = \sqrt{1 + \frac{64}{36}} = \sqrt{1 + \frac{16}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3} \] ### Step 4: Find the coordinates of the foci The coordinates of the foci for a hyperbola are given by \((\pm ae, 0)\): \[ ae = 6 \cdot \frac{5}{3} = 10 \] Thus, the coordinates of the foci are: \[ (10, 0) \quad \text{and} \quad (-10, 0) \] ### Step 5: Find the coordinates of the vertices The coordinates of the vertices for a hyperbola are given by \((\pm a, 0)\): \[ (6, 0) \quad \text{and} \quad (-6, 0) \] ### Step 6: Calculate the length of the latus rectum The length of the latus rectum \(L\) is given by the formula: \[ L = \frac{2b^2}{a} \] Substituting the values of \(b^2\) and \(a\): \[ L = \frac{2 \cdot 64}{6} = \frac{128}{6} = \frac{64}{3} \] ### Summary of Results - **Coordinates of the foci:** \((10, 0)\) and \((-10, 0)\) - **Coordinates of the vertices:** \((6, 0)\) and \((-6, 0)\) - **Eccentricity:** \(\frac{5}{3}\) - **Length of the latus rectum:** \(\frac{64}{3}\)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the coordinate of the foci, vertices, eccentricity and the length of the latus rectum of the hyperbola 9y ^(2) - 4x ^(2) = 36

Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the Hyperbola 16x^(2)-9y^(2)=576

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 16 x^2-9y^2=576

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 49 y^2-16 x^2=784

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 5y^2-9x^2=36

Find the co-ordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola y^(2) - 25x^(2) = 25 .

Find the coordinate of the foci, vertice eccentricity and the length of the latus rectum of the hyperbola 49y ^(2) - 16x ^(2) = 784

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. (x^2)/(16)-(y^2)/9=1

Write the length o the latus rectum of the hyperbola 16 x^2-9y^2=144.

Write the length of the latus rectum of the hyperbola 16 x^2-9y^2=144.