Home
Class 11
MATHS
Find the coordinate of the foci, vertice...

Find the coordinate of the foci, vertices, eccentricity and the length of the latus rectum of the hyperbola
`9y ^(2) - 4x ^(2) = 36`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Convert the given equation into standard form.** 2. **Identify the values of \(a\), \(b\), and \(c\).** 3. **Find the coordinates of the foci.** 4. **Find the coordinates of the vertices.** 5. **Calculate the eccentricity.** 6. **Determine the length of the latus rectum.** ### Step 1: Convert the given equation into standard form The given equation is: \[ 9y^2 - 4x^2 = 36 \] To convert it into standard form, we divide each term by 36: \[ \frac{9y^2}{36} - \frac{4x^2}{36} = 1 \] This simplifies to: \[ \frac{y^2}{4} - \frac{x^2}{9} = 1 \] ### Step 2: Identify the values of \(a\), \(b\), and \(c\) From the standard form \(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1\), we can identify: - \(a^2 = 4 \Rightarrow a = 2\) - \(b^2 = 9 \Rightarrow b = 3\) Now, we calculate \(c\) using the formula: \[ c^2 = a^2 + b^2 \] Substituting the values: \[ c^2 = 4 + 9 = 13 \Rightarrow c = \sqrt{13} \] ### Step 3: Find the coordinates of the foci For a hyperbola of the form \(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1\), the coordinates of the foci are given by: \[ (0, \pm c) \] Thus, the coordinates of the foci are: \[ (0, \sqrt{13}) \quad \text{and} \quad (0, -\sqrt{13}) \] ### Step 4: Find the coordinates of the vertices The coordinates of the vertices are given by: \[ (0, \pm a) \] Thus, the coordinates of the vertices are: \[ (0, 2) \quad \text{and} \quad (0, -2) \] ### Step 5: Calculate the eccentricity The eccentricity \(e\) is given by: \[ e = \frac{c}{a} \] Substituting the values: \[ e = \frac{\sqrt{13}}{2} \] ### Step 6: Determine the length of the latus rectum The length of the latus rectum \(L\) is given by: \[ L = \frac{2b^2}{a} \] Substituting the values: \[ L = \frac{2 \cdot 9}{2} = 9 \] ### Final Results - **Coordinates of the foci:** \((0, \sqrt{13})\) and \((0, -\sqrt{13})\) - **Coordinates of the vertices:** \((0, 2)\) and \((0, -2)\) - **Eccentricity:** \(e = \frac{\sqrt{13}}{2}\) - **Length of the latus rectum:** \(L = 9\)
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the coordinate of the foci, vertice eccentricity and the length of the latus rectum of the hyperbola 49y ^(2) - 16x ^(2) = 784

Find the coordinate of the foci, vertice eccentricity and the length of the latus rectum of the hyperbola (y ^(2))/(9) - (x ^(2))/(27) =1

Find the co-ordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbola y^(2) - 25x^(2) = 25 .

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 5y^2-9x^2=36

Find the coordinates of the foci, the vertices, the eccentricity and the length of the latus rectum of the Hyperbola 16x^(2)-9y^(2)=576

The length of the latus rectum of the hyperbola x^(2) -4y^(2) =4 is

Find the coordinate of the foci, coordinate of the vertices, eccentricity and the length of the latus rectum of the hyperbola 16x ^(2) - 9y ^(2) =576

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 49 y^2-16 x^2=784

Find the foci, vertices, eccentricity and length of latus rectum of the hyperbola : 3y^2 - x^2 = 27 .

Find the coordinates of the foci and the vertices, the eccentricity and the length of the latus rectum of the hyperbolas. 16 x^2-9y^2=576