Home
Class 12
MATHS
(dy)/(dx)=(x^2+e^(x))/(y^2)...

`(dy)/(dx)=(x^2+e^(x))/(y^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=(x+e^(2x))/(y)

(dy)/(dx)=(e^(y))/(x^(2))-(1)/(x)

The solution of the differential equation (e^(x^(2))+e^(y^(2)))y(dy)/(dx)+e^(x^(2))(xy^(2)-x)=0is

Solve : (dy)/(dx)=e^(x+y)+x^(2)e^(y)

Solve: (dy)/(dx)=e^(x-y)+x^2e^(-y)

The general solution of (dy)/(dx) = 2x e^(x^(2)-y) is

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

The solution of the differential equation (dy)/(dx) = e^(3x-2y) +x^(2)e^(-2y) ,is

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0