Home
Class 12
MATHS
x^(m)*y^(n) = (x+y)^(m+n) prove that...

` x^(m)*y^(n) = (x+y)^(m+n) ` prove that` dy/dx= y/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(m)y^(n)=(x+y)^(m+n)

If x^(m)*y^(n)=(x+y)^(m+n), show that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n) , prove that : (d^(2)y)/(dx^(2))=0 .

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0

If x^(m)y^(n)=1, prove that (dy)/(dx)=-(my)/(nx)

If (x-y)^(m+n)=x^m.y^n , show that dy/dx=y/x

If x^(m) y^(n) =2(x+y)^(m+n) , the value of (dy)/(dx) is

if x^(m)*y^(n)=1 then (dy)/(dx)