Home
Class 12
MATHS
lim(n->oo)(1^2+2^2+3^3+..........+n^2)/n...

`lim(n->oo)(1^2+2^2+3^3+..........+n^2)/n^3`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

Evaluate: lim_(n rarr oo)(1^(2)+2^(2)+......+n^(2))/(n^(3))

lim_(n->oo) [ (1^3+ 2^3 + 3^3 -------n^3)/n^4]

lim (n rarr oo) (1 ^ (2) + 2 ^ (2) + 3 ^ (3) + ......... + n ^ (2)) / (n ^ (3))

The value of lim_(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+..........+(n^(2))/(n^(3)+n^(3))) is :

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (3n ^ (2)) =?

lim_(n rarr oo)(n^(2)(1^(3)+2^(3)+......+n^(3)))/((1^(2)+2^(2)+......+n^(2))^(2))