Home
Class 12
MATHS
Find the value of x if tan^(-1)(x^(-1))=...

Find the value of x if `tan^(-1)(x^(-1))= cot^(-1)(4/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x tan^(-1)(x-1)=cot^(-1)((4)/(x))

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

Find the value of tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

tan^(-1)(cot4x)

Find the value of x where tan^(-1)3+cot^(-1)x=(pi)/(2)

tan^(-1)(cot x)+cot^(-1)(tan x)

Find the value of x for which tan^(-1)(1+x)+tan^(-1)x+tan^(-1)(x-1)=tan3 gets satisfied.

The number values of x if cos(tan^(-1)(1+x))=sin(cot^(-1)x) is/are

The sum of possible values of x for tan^(-1) ( x + 1) + cot ^(-1) ((1)/( x - 1)) = tan^(-1)((8)/( 31)) is :