Home
Class 13
MATHS
lim(x->0)(1/(sin^2x)-1/(sinh^2x))=...

`lim_(x->0)(1/(sin^2x)-1/(sinh^2x))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)[1^(1/sin^2x)+2^(1/sin^2x)+...................+n^(1/sin^2x)]^(sin^2x) =

lim_(x rarr0)(a^(sin x)-1)/(sin x)

lim_(x->0) (1-cos x)/(sin^2 x)

lim_(x rarr0)((1)/(sin^(2)x)-(1)/(birth^(2)x))=

Lim_(x rarr0)(a^(sin x)-1)/(sin x)

"lim_(x rarr0)((1)/(x^(2))-(sin^(2)x)/(x+1))

lim_(x rarr0)((1)/(x^(2))-(1)/(sin^(2)x)) is equal to:

lim_(x rarr0)((1)/(x^(2))-(1)/(sin^(2)x)) is equal to

The value of lim_(xrarr0) {1^((1)/(sin^(2)x)+)2^((1)/(sin^(2)x))+3^((1)/(sin^(2)x))+.....+n^((1)/sin^(2)x)}^(sin^2x) , is