Home
Class 12
MATHS
" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,...

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

|[yz,x,x^(2)],[zx,y,y^(2)],[xy,z,z^(2)]|=|[1,x^(2),x^(3)],[1,y^(2),y^(3)],[1,z^(2),z^(3)]|

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zy,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(y-z)(z-x)(x-y)(yz+zy+xy)

Show that, |[1,x,yz],[1,y,zx],[1,z,xy]|=|[1,x,x^(2)],[1,y,y^(2)],[1,z,z^(2)]|

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

Prove that quad det ([yx-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]) is divisible by (x+y+z) and hence find the quotient.

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

[[x,x^(2),yzy,y^(2),zxz,z^(2),xy]]=(x-y)(y-z)(z-x)(xy+yz+zx)