Home
Class 12
MATHS
int0^1(log|1+x|)/(1+x^2)dx=pi/8log2...

`int_0^1(log|1+x|)/(1+x^2)dx=pi/8log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(log|1+x|)/(1+x^(2))dx=(pi)/(8)log2

int_(0)^(1)(log(1+x))/(1+x^(2))dx

" "int(log x)/((1+x)^(2))dx

int_0^1 log((x)/(1-x))dx=0

Evaluate the following integral: int_0^1("log"(1+x))/(1+x^2)dx

The value of int_0^1(8log(1+x))/(1+x^2)dx is a. pilog2 b. \ pi/8log2 c. \ pi/2log2 d. log2

int(log x-1)/((log x)^(2))dx

The value of int_0^1 (8log(1+x))/(1+x^2) dx is:

int(ln x)/((1+ln x)^(2))dx=

int((log x)/((1+log x)^(2)))dx