Home
Class 13
MATHS
lim(x->0)(|x|)/x...

`lim_(x->0)(|x|)/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

F(x) is the function such that (lim)_(x->0)(f(x))/x=1\ a n d\ (lim)_(x->0)(x(1+acosx))/((f(x))^3)=1 , then find the value of a

lim_(x to 0) (|x|)/x =

lim_(x rarr0)(|x|)/(x)

lim_(x->0)f(x)=(x^3-x)/(x^2-1)

lim_(x->0) (3x+1)/(x+3)

lim_(x->0) (x-1)/(3x-6)

lim_(x->0)|x(x-1)|^[cos2x] ; where [.] is GIF is equal to : A.) 1 B.) 0 C.) e D.) does not exist

If A=lim_(x to 0) (sin^(-1)(sinx))/(cos^(-1)(cosx))and B=lim_(x to 0)([|x|])/(x), then

Evaluate of the following limit: (lim)_(x->0)(x-sinx)/(x^3)

lim_(x->0) (x^3-3x+1)/(x-1)