Home
Class 12
MATHS
If y^x=e^(y-x) , prove that (dy)/(dx)=((...

If `y^x=e^(y-x)` , prove that `(dy)/(dx)=((1+logy)^2)/(logy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If e^(y)=y^(x), prove that (dy)/(dx)=((log y)^(2))/(log y-1)

If y^(x)=e^(y-x) , then prove that (dy)/(dx) = ((1+logy)^(2))/(logy)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))