Home
Class 12
MATHS
If x sqrt(1 + y) + y sqrt(1 + x) = 0, th...

If `x sqrt(1 + y) + y sqrt(1 + x) = 0,` then prove that `dy/dx = - (1 + x)^(-2).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If quad sqrt(1+y)+y sqrt(1+x)0,-1

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If y=x sin^(-1)x+sqrt(1-x^(2)) " then prove that " dy/dx=sin^-1x.

If y=sqrt(cos x+sqrt(cos x +sqrt(cos x+....oo))) " then prove that " dy/dx = sinx /(1-2y).

If x sqrt(1+y)+y sqrt(1+x)=0, find (dy)/(dx)* To prove (dy)/(dx)=-(1)/((1+x)^(2))

If y=sqrt(log x+sqrt(log x +sqrt(log x+....oo))) " then prove that " dy/dx = 1/(x(2y-1)).

If y=sqrt(tan x+sqrt(tan x +sqrt(tan x+....oo))) " then prove that " dy/dx = sec^2 x /(2y-1).

If y=sqrt(sin x+sqrt(sin x +sqrt(sin x+....oo))) " then prove that " dy/dx = cos x /(2y-1).