Home
Class 12
MATHS
lim(n rarr oo)(1-(2)/(n))^(n)...

`lim_(n rarr oo)(1-(2)/(n))^(n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

Evaluate: lim_(n rarr oo)((1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(4))+...+(1)/(n))

Let A=[1011]. Then which of following is/are true? a.( lim )_(n rarr oo)(1)/(2)A^(-n)=[0000] b.(lim_(n rarr oo)(1)/(n^(2))A^(-n)=[00-10]c(lim_(n rarr oo)(1)/(n)A^(-n)=[00-10]dA^(-n)=[00-n1]AA n in N

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

Evaluate the following limit: (lim)_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))++(n-1)/(n^(2)))

Evaluate(with the help of definite integral): lim_(n rarr oo){(1+(1)/(n))(1+(2)/(n))dots(1+(n)/(n))}^((1)/(n))

Evaluate: lim_(n rarr oo)[(1)/((n+1)^(2))+(1)/((n+2)^(2))+...+(1)/((2n)^(2))]

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(n rarr oo)((-1)^(n)n)/(n+1)