Home
Class 12
MATHS
Prove that, int(2)^(3)(sqrt(x)dx)/(sqrt(...

Prove that, `int_(2)^(3)(sqrt(x)dx)/(sqrt(x)+sqrt(5-x))=(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : int_(2)^(7) (sqrt(x))/(sqrt(9-x)+sqrt(x))dx=(5)/(2)

Prove that : int_(0)^(a) (sqrt(x))/(sqrt(x)+sqrt(a)-x)dx=(a)/(2)

int_(0)^(a)(sqrt(x))/((sqrt(x)+sqrt(a-x)))dx=(a)/(2)

int_(1)^(4)(sqrt(x))/((sqrt(5-x)+sqrt(x)))dx=(3)/(2)

int(dx)/(sqrt(x)(2+sqrt(x)))

int_(1)^(2) sqrt(x)/ (sqrt(3-x) + sqrt(x))dx=

int(dx)/((sqrt(1-3x)-sqrt(5-3x)))

evaluate int_(1)^(2)(sqrt(x))/(sqrt(3-x)+sqrt(x))dx

int_(0)^(2)(3^(sqrt(x)))/(sqrt(x))dx

int_(0)^(4)(3sqrt(x+5))/(3sqrt(x+5)+3sqrt(9-x))dx=