Home
Class 11
MATHS
If A A=[3-2 4-2]and I=[1 0 0 1], find k ...

If A `A=[3-2 4-2]`and `I=[1 0 0 1]`, find k so that `A^2=k A-2I`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If AA=[[3,-24,-2]] and I=[[1,00,1]], find k so that A^(2)=kA-2I

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

If A=[(3,1),(-1,2)] and I=[(1,0),(0,1)] find 'k' so that A^(2)=5A+kI .

If A=[(0,3),(-7,5)] and I=[(1,0),(0,1)] , then find 'k' so that k^(2)=5A-21I .

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

If A=[[2,4-1,k]] and A^(2)=0, then find the value of k.

If A=[[4, -1], [-1, k]] such that A^(2)-6A+7I=0 and k=

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0