Home
Class 12
MATHS
If (log y)/(y-z)=(logy)/(z-x) =(logz)/(x...

If `(log y)/(y-z)=(logy)/(z-x) =(logz)/(x-y)`, then prove that: `x^x y^y z^z=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log_(e)x)/(y-z)=(log_(e)y)/(z-x)=(log_(e)z)/(x-y), prove that xyz=1

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

(If(y+z-x))/((x(y+z-x))/(log y))=(y(z+x-y))/(log y)(z(x+y-z))/(log z), prove that x^(y)y^(x)=z^(x)y^(z)=x^(z)z^(x)

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If (y+z-x)/(log x)=y(z+x-y)/(log y)=z(x+y-z)/(log z) Prove that x^(y)y^(x)=z^(y)y^(z)=x^(z)z^(x)