Home
Class 12
MATHS
If y=x tan^(-1)(x/y) then prove that dy/...

If `y=x tan^(-1)(x/y)` then prove that `dy/dx=y/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a then prove that (dy)/(dx)=(y)/(x)

if y=tan^(-1)((2x)/(1-x^(2))) then prove that (dy)/(dx)=(2)/(1+x^(2))

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If y=tan^(-1)(sqrt(1+x^(2))-x) then,prove that (dy)/(dx)=-(1)/(2(x^(2)+1))

If y =(x)/(x+5) then prove that x (dy)/(dx)=y(1-y)

If y/x=tan^(-1)(x/y) then (dy)/(dx)=

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

If y=sin^(-1)x then prove that (1-x^(2))(d^(y))/(dx^(2))-x(dy)/(dx)=0