Home
Class 12
MATHS
if, sin^-1x + sin^-1y + sin^-1z =pi then...

if, `sin^-1x + sin^-1y + sin^-1z =pi` then prove that `xsqrt(1-x^2) + ysqrt(1-y^2) + zsqrt(1-z^2) =2xyz.`

Promotional Banner

Similar Questions

Explore conceptually related problems

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-x^2) + y sqrt(1-y^2) =1 .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then the value of xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi, Prove x sqrt (1-x ^ (2)) + y sqrt (1-y ^ (2) ) + z sqrt (1-z ^ (2)) = 2xyz

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :