Home
Class 11
MATHS
If A+B+C=pi then prove that cos^2 (A/2)+...

If `A+B+C=pi` then prove that `cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^0 , prove that : cos^2(A/2) + cos^2(B/2) - cos^2(C/2) = 2cos(A/2) cos(B/2) sin( C/2)

If A+B+C=pi , prove that : sin^2( A/2) + sin^2( B/2) -sin^2( C/2) =1-2 cos( A/2) cos(B/2) sin( C/2)

If A+B+C=180^(@), then prove that cos^(2)(A)/(2)+cos^(2)(B)/(2)+cos^(2)(C)/(2)=2(1+sin(A)/(2)sin(B)/(2)sin(C)/(2))

If A+B+C=180^0 , prove that : cos^2( A/2) + cos^2( B/2) + cos^2(C/2) = 2+2 sin(A/2) sin( B/2) sin( C/2)

If A+B+C=2 pi, then prove that cos^(2)B+cos^(2)C-sin^(2)A=2cos A cos B cos C

If A+B+C=pi then prove cos( (A)/2) cos( (B-C)/2) + cos( B/2) cos((C-A)/2) + cos( C/2) cos( (A-B)/2) = sinA +sinB+sinC

If A+B+C=pi then prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4cos((pi-A)/(4))cos((pi-B)/(4))cos((pi-C)/(4))

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A,B,C are the angles of a triangle then prove that cos A+cos B-cos C=-1+4cos((A)/(2))cos((B)/(2))sin((C)/(2))

In a /_ABC, prove that cos^(2)(2A)+cos^(2)(2B)+cos^(2)(2C)=1+2cos2A cos2B cos2C