Home
Class 12
MATHS
y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sq...

`y=sec^(-1)""(1)/(2x^(2)-1),0ltxlt(1)/(sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

If y=sec^(-1)(1/(2x^2-1));0ltxlt (sqrt(2)),="" then="" find="" (dy)/(dx)

If y=tan^(-1)((u)/(sqrt(1-u^(2)))) and x=sec^(-1)((1)/(2u^(2)-1))u in(0,(1)/(sqrt(2)))uu((1)/(sqrt(2)),1), prove that 2(dy)/(dx)+1=0

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

sec^(-1)((1)/(sqrt(1-x^(2))))

The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

The differential coefficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

cos^(-1)((1)/(sqrt(2)))+sec^(-1)(-sqrt(2))