Home
Class 12
MATHS
If A=[2 3 1 2] , verify that A^2-4A+I=O ...

If `A=[2 3 1 2]` , verify that `A^2-4A+I=O` , where `I=[1 0 0 1]` and `O=[0 0 0 0]` . Hence, find `A^(-1)` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[2312], verify that A^(2)-4A+I=O where I=[1001] and O=[0000]. Hence find A^(-1).

If A=[{:(2,-1),(-1,2):}] , verify A^(2)-4A+3I=0 , where I=[{:(1,0),(0,1):}] and O=[{:(0,0),(0,0):}] . Hence find A^(-1) .

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

Find the inverse of each of the matrices given below : If A=[(3,2),(2,1)] , verify that A^(2)-4A-I=O, and "hence " "find "A^(-1) .

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[[3,1-1,2]],I=[[1,00,1]] and O=[[0,00,0]], show that A^(2)-5A+7I=0 Hence find A^(-1)

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

If A=[[1,0,-32,1,30,1,1]], then verify that A^(2)+A=A(A+I), where I is the identity matrix.

If A=[(4,2),(-1,1)] , show that (A-2 I) A-3 I) =0

For the matrix A=[[2,31,2]] show that A^(2)-4A+I=0 Hence find A^(-1)