Home
Class 12
MATHS
सिद्ध कीजिए कि cos[tan^(-1){sin(cot...

सिद्ध कीजिए कि
` cos[tan^(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos tan^(-1)sin cot^(-1)x=sqrt((x^(2)+1)/(x^(2)+2))

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

sin {cot^(-1)[tan (cos^(-1)x)]=

Prove the following: cos{tan^(-1){sin(cot^(-1)x)}}=sqrt((1+x^(2))/(2+x^(2)))

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that: sin[cot^(-1){cos(tan^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))cos[tan^(^^)(-1){sin(cot^(-1)x)}]=sqrt((x^(2)+1)/(x^(2)+2))

सिद्ध कीजिए कि 2tan^(-1)sqrt((b)/(a))=cos^(-1)((a-b)/(a+b))

f(x)=cos(2tan^-1(sin(cot^-1sqrt((1-x)/x)))) then

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=