Home
Class 11
MATHS
यदि किसी समान्तर श्रेढ़ी के प्रथम p , q ,...

यदि किसी समान्तर श्रेढ़ी के प्रथम p , q , r पदों का योगफल क्रमशः a , b तथा c हो तो सिद्ध कीजिए कि
`(a)/(p)(q-r)+(b)/(q)(r-p)+(c)/(r)(p-q)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Add p(p-q),q(q-r) and r(r-p)

Sum of the first p,q and r terms of an A.P are a,b and c,respectively.Prove that quad (a)/(p)(q-r)+(b)/(q)(r-p)+(c)/(r)(p-q)=0

The sum of the first p,q,r terms of an A.P.are a,b,c respectively.Show that (a)/(p)(q-r)+(b)/(q)(r-p)+(c)/(r)(p-q)=0

The sum of the first p,q, rterms of an A.P are a,b, crespectively.Show that (a)/(p)[q-r]+(b)/(q)[r-p]+(c)/(r)[p-q]=0

(b) If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) , prove that a^(p)b^(q)c^(r)=1

If (log a)/(q-r)=(log b)/(r-p)=(log c)/(p-q) prove that a^(p)b^(q)c^(r)=1

The lines (p-q)x+(q-r)y+(r-p)=0(q-r)x+(r-p)y+(p-q)=0,(x-p)x+(p-q)y+(q-r)=

The pth, qth and rth terms of an A.P. are a, b and c respectively. Show that a(q – r) + b(r-p) + c(p – q) = 0

If a,b,c be respectively the sum of first p,q,r terms of an A.P. then a/p(q-r) + b/q(r-p) + c/r(p-q) equals :