Home
Class 11
MATHS
(lim)(x->0)(sin2x)/x is equal to a. 1 b ...

`(lim)_(x->0)(sin2x)/x` is equal to a. 1 b . 1/2 c. 2 d. 0

Promotional Banner

Similar Questions

Explore conceptually related problems

(lim_(x rarr0)(sin2x)/(x) is equal to a.1b*1/2c.2d.0

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

(lim_(x rarr0)(sqrt(1+x)-1)/(x) is equal to a.1b.0 c.2d.(1)/(2)

lim_(x rarr0)(ln(sin2x))/(ln(sin x)) is equals to a.0 b.1 c.2 d.non x rarr0ln(sin x) existent

(lim_(x rarr0)(sin x^(0))/(x) is equal to a.1b*pi c.xdpi/180

lim_(x rarr0)x^(2)sin((1)/(x)) is equal to

(lim)_(x->0)((cos x)^(1//3)-(cos x)^(1//2))/(sin^2x) equals a. 1/12 b. 1/6 c. 1/3 d.1/2

(lim)_(x rarr oo)(sin x)/(x) equals a.1b*0c.oo d . does not exist

lim_(x rarr0)(ln(1+2x)-2ln(1+x))/(x^(2)) is equal to 3 b.1 c.-1 d.0

(lim_(x rarr))_(xvec 0)(1-cos^(3)x)/(x sin x cos x) is equal to 3 b.(1)/(2) c.(3)/(2) d.-(3)/(2)