Home
Class 11
MATHS
Simplify: sin (B + C) sin (B - C) + si...

Simplify:
`sin (B + C) sin (B - C) + sin (C + A) sin (C - A) + sin(A + B) sin (A - B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin (B + CA) + sin (C + AC) + sin (A + BC) = 4sin A sin B sin C

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

19.Prove that sin (A + B) sin (AB) + sin (B + C) sin (BC) + sin (C + A) sin (CA) = 0

(sin B) / (sin (B + C)) = (b) / (a)

In Delta ABC a cdot sin(B - C) + b cdot sin (C - A) + c cdot sin (A - B) =

(sin(A - B))/(sin A sin B) + (sin(B - C))/(sin B sin C) + (sin (C - A))/(sin C sin A)=0

(sin (AC) + 2sin A + sin (A + C)) / (sin (BC) + 2sin B + sin (B + C)) is