Home
Class 11
MATHS
निम्न समीकरण को हल कीजिए - tan^(-1)...

निम्न समीकरण को हल कीजिए -
`tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

(tan^(-1)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4). find

Solve : tan^(-1) ((x-1) /( x-2))-tan^(-1)((x+1)/(x+2))=(pi)/(4) ,

tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=(pi)/(4) , |x| lt 1

tan^(-1)((a)/(x))+tan^(-1)((b)/(x))=(pi)/(2) then x=

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

If tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4) then find the value of x

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x:tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=(pi)/(4)