Home
Class 12
MATHS
prove that [cos(sin^(-1) x)]^(2) = [sin(...

prove that `[cos(sin^(-1) x)]^(2) = [sin(cos^(-1) x)]^(2) `.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Prove that : cos^(-1) (cos^(2)x - sin^(2)x) = 2x

Prove that cos[tan^(-1){sin(cos^(-1)x)}]=(1)/(sqrt(2-x^(2)))

Prove that [(1-sin A-cos A)^(2)=2(1-sin A)(1-cos A)]

prove that sin^(8)x-cos^(8)x=(sin^(2)x-cos^(2)x)(1-2sin^(2)x cos^(2)x)

prove that cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))=2cos^(-1)sqrt((1+x)/(2))

Prove that cos [tan^(-1){(sin(cot^(-1)x}] =((x^(2)+1)/(x^(2)+2)) ^(1/2)

Prove that :cos4x=1-8sin^(2)x cos^(2)x