Home
Class 12
MATHS
यदि -(1)/(sqrt2)lexle1, तो सिद्ध करे कि ...

यदि `-(1)/(sqrt2)lexle1`, तो सिद्ध करे कि
`tan^(-1)""(sqrt(1+x)-sqrt(x-1))/(sqrt(1+x)+sqrt(1-x))=(pi)/(4)-(1)/(2)cos^(-1)x.`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

sqrt(x+1)-sqrt(x-1)=sqrt(4x-1)

tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=(pi)/(4)+(1)/(2)cos^(-1)x^(2)

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2 cos^(-1)x , 0

Prove that cos^(-1)((sqrt(1+x)+sqrt(1-x))/(2))=(pi)/(4)-(1)/(2)cos^(-1)x

tan^-1 (sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-sin x))/(sqrt(1+x)-sqrt(1-sin x)))=(pi)/(4)-(1)/(2)cos^(-1),-(1)/(sqrt(2))<=x<=1

Prove that : tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))=(pi)/(4)+(1)/(2) cos^(-1)x^(2)

Prove that : cot^(-1) ((sqrt(1+x) -sqrt(1-x))/(sqrt(1+x) +sqrt(1-x))) = pi/4 +1/2 cos^(-1) x