Home
Class 12
MATHS
tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^...

`tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+tan^(-1)((1)/(3))+tan^(-1)((1)/(8))=`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((4)/(7))-tan^(-1)((1)/(5))=tan^(-1)((1)/(3))

2tan^(-1)((1)/(5))+tan^(-1)((1)/(7))+2tan^(-1)((1)/(8))=

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

2Tan^(-1)(1)/(3)+tan^(-1)((1)/(7))=

If "S" is the sum of the first "10" terms of the series tan "^(-1)((1)/(3))+tan^(-1)((1)/(7))+tan^(-1)((1)/(13))+tan^(-1)((1)/(21))+.... ,then "tan(S)" is equal to:

tan^(-1)((4)/(7))+tan^(-1)((1)/(7)) = tan^(-1)((7)/(9))

Solve: tan^(-1)((1)/(2))+tan^(-1)((1)/(3))+tan^(-1)((3)/(5))+tan^(-1)((1)/(7))

tan^(-1)((3)/(4))+tan^(-1)((3)/(5))-tan^(-1)((8)/(19))=

The value of tan^(-1)((1)/(3))+tan^(-1)((2)/(9))+tan^(-1)((4)/(33))+tan^(-1)((8)/(129))+...n terms is:

tan(tan^(-1)((1)/(2))-tan^(-1)((1)/(3)))=