Home
Class 11
MATHS
If x^(p)y^(q)=(x+y)^(p+q), prove that (d...

If `x^(p)y^(q)=(x+y)^(p+q)`, prove that `(dy)/(dx)=(y)/(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If sec((x+y)/(x-y))=a, prove that (dy)/(dx)=(y)/(x)

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

If x^py^q=(x+y)^(p+q) then the value of (d^(2)y)/(dx^(2)) is (where p,q in N ) (A) 0 (B) -1 (C) 1(D) None of these

If x^py^q=(x+y)^(p+q) , then dy/dx= (a) x/y (b) y/x (c) x/(x+y) (d) y/(y+x)