Home
Class 12
MATHS
The value of int(0)^(1)tan^(-1)((2x-1)/(...

The value of `int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

STATEMENT 1: The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx=0 STATEMENT 2:int_(a)^(b)f(x)dx=int_(0)^(b)f(a+b-x)dx

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=

int tan^(-1)((2x)/(1-x^(2)))dx

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is 1 b. -1 c. 0 d. pi//4

int_(0)^(1)tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

int_(0)^(sqrt(3))tan^(-1)((2x)/(1-x^(2)))dx

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2))dx is____.

Evaluate int_(0)^(1)tan^(-1)((1)/(1-x+x^(2)))dx

int tan^(-1)((1)/(1-x+x^(2)))dx