Home
Class 12
MATHS
If x^p y^q = (x+y)^(p+q) find dy/dx...

If `x^p y^q = (x+y)^(p+q)` find dy/dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^py^q=(x+y)^(p+q) , then dy/dx= (a) x/y (b) y/x (c) x/(x+y) (d) y/(y+x)

If x^(p) y^(q) = (x + y)^((p + q)) " then " (dy)/(dx)= ?

If x^(p) + y^(q) = (x + y)^(p+q) , " then" (dy)/(dx) is

x^(p)*y^(q) = (x+y)^(p+q) prove that dy/dx= y/x

If x^py^q=(x+y)^(p+q) then the value of (d^(2)y)/(dx^(2)) is (where p,q in N ) (A) 0 (B) -1 (C) 1(D) None of these

If x^(p)y^(q)=(x+y)^(p+q) , show that dy/dx=y/x .

If x^(p)y^(q)=(x+y)^(p+q) , prove that (dy)/(dx)=(y)/(x)

If x # y = (x + y)/(xy) , then the value of P # (q # r) for every p, q, in N :