Home
Class 12
MATHS
int0^pi(xtanx)/(secxcosec x)=(pi^2)/4...

`int_0^pi(xtanx)/(secxcosec x)=(pi^2)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the following: int_0^pi (xtanx)/(secxcosecx)dx

int_(0)^(pi)(x tanx)/((secxcosecx))dx=(pi^(2))/(4)

int_0^pi (xtanx)/(secx+tanx)dx

Evaluate the following integral: int_0^pi(xtanx)/(secx\ cos e c\ x)dx

int_(0)^( pi)x(tan x)/(sec x+cos x)dx=(pi^(2))/(4)

int_(0)^( pi)(x tan x)/(sec x+cos x)dx is (pi^(2))/(4)(b)(pi^(2))/(2)(c)(3 pi^(2))/(2) (d) (pi^(2))/(3)

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

Evaluate: int_0^pi(xtanx)/(s e c x+tanx)dx

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)