Home
Class 12
MATHS
lim(n->oo)(n/(n^2+1)+n/(n^2+2)+n/(n^2+3)...

`lim_(n->oo)(n/(n^2+1)+n/(n^2+2)+n/(n^2+3)+....n/(n^2+n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_(n to oo) [ 1/(n^2) + 2/(n^2) + … + n/(n^2)]

Evaluate the following (i) lim_(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))....+(n-1)/(n^(2))) (ii) lim_(n to oo)((1)/(n+1)+(1)/(n+2)+....+(1)/(2n)) (iii) lim_(n to oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+(n)/(2n^(2))) (iv) lim_(n to oo)((1^(p)+2^(p)+.....+n^(p)))/(n^(p+1)),pgt0

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n to oo)[(n)/(1+n^(2))+(n)/(4+n^(2))+(n)/(9+n^(2))+…+(1)/(2n^2)]=

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=

Evaluate the following limit: (lim)_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))++(n-1)/(n^(2)))