Home
Class 9
MATHS
If tan(A+B)=sqrt(3) and sqrt(3)tan(A-B)=...

If `tan(A+B)=sqrt(3) and sqrt(3)tan(A-B)=1`, find the angles A and B,where A and B are Acute Angles.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angles A and B given the equations: 1. \( \tan(A + B) = \sqrt{3} \) 2. \( \sqrt{3} \tan(A - B) = 1 \) ### Step 1: Analyze the first equation From the first equation, we have: \[ \tan(A + B) = \sqrt{3} \] We know that \( \tan(60^\circ) = \sqrt{3} \). Therefore, we can set: \[ A + B = 60^\circ \quad \text{(Equation 1)} \] ### Step 2: Analyze the second equation From the second equation, we can rewrite it as: \[ \sqrt{3} \tan(A - B) = 1 \] Dividing both sides by \( \sqrt{3} \): \[ \tan(A - B) = \frac{1}{\sqrt{3}} \] We know that \( \tan(30^\circ) = \frac{1}{\sqrt{3}} \). Therefore, we can set: \[ A - B = 30^\circ \quad \text{(Equation 2)} \] ### Step 3: Solve the equations simultaneously Now we have two equations: 1. \( A + B = 60^\circ \) 2. \( A - B = 30^\circ \) We can add these two equations: \[ (A + B) + (A - B) = 60^\circ + 30^\circ \] This simplifies to: \[ 2A = 90^\circ \] Dividing both sides by 2 gives: \[ A = 45^\circ \] ### Step 4: Substitute to find B Now, we can substitute the value of \( A \) back into Equation 1 to find \( B \): \[ 45^\circ + B = 60^\circ \] Subtracting \( 45^\circ \) from both sides gives: \[ B = 60^\circ - 45^\circ = 15^\circ \] ### Conclusion Thus, the angles are: \[ A = 45^\circ \quad \text{and} \quad B = 15^\circ \] Both angles A and B are acute angles.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(A)|68 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

If tan(A+B)=sqrt(3)andsin(A-B)=(1)/(2) ,then find the value of tan (2A-3B) .

If tan(A-B)=1/(sqrt(3)) and tan(A+B)=sqrt(3) , 0^@ B find A and B .

If tan (A-B) = (1)/(sqrt3) and sin A = (1)/(sqrt2) find the value of B.

If sin(A-B)=1/(sqrt(10 )), cos(A+B)=2/(sqrt(29)) , find the value of tan2A where A and B lie between 0 and pi/4

In a triangle ABC,a/b=2+sqrt(3) and /_C=60^(@) then angle A and B is

If tan(A+B)=sqrt(3) and t a n(A- B)=1/(sqrt(3)); 0^@ le A + B le 90^@ and A le B , find A and B.

Given that tan (A+ B) =1 and tan (A-B) = 1/7, find without using tables the values of tan A and tan B.

In Delta ABC , tan B = sqrt(3) , find the values of cosec B and cos B.

If tan(A-B)=1, and sec(A+B)=2/sqrt3, find the smallest positive values of A and B and also their most general values.

if tan (A + B) = sqrt(3) and tan (A - B) = 1/ sqrt(3) , 0 (lt) A + B (le) 90^@, A (gt) B , then find the values of A and B.

ICSE-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES-EXERCISE 23(C)
  1. If tan(A+B)=sqrt(3) and sqrt(3)tan(A-B)=1, find the angles A and B,whe...

    Text Solution

    |

  2. Solve the following equations for A, if : 2sinA=1

    Text Solution

    |

  3. Solve the following equations for A, if : 2cos2A=1

    Text Solution

    |

  4. Solve the following equations for A, if : sin3A=sqrt(3)/2

    Text Solution

    |

  5. Solve the following equations for A, if : sec2A=2

    Text Solution

    |

  6. Solve the following equations for A, if : sqrt(3)tanA=1

    Text Solution

    |

  7. Solve the following equations for A, if : tan3A=1

    Text Solution

    |

  8. Solve the following equations for A, if : 2sin3A=1

    Text Solution

    |

  9. Solve the following equations for A, if : sqrt(3)cot2A=1

    Text Solution

    |

  10. Calculate the value of A, if : (sinA-1)(2cosA-1)=0

    Text Solution

    |

  11. Calculate the value of A, if : (tanA-1)(cosec3A-1)=0

    Text Solution

    |

  12. Calculate the value of A, if : (sec2A-1)(cosec3A-1)=0

    Text Solution

    |

  13. Calculate the value of A, if : cos3A.(2sin2A-1)=0

    Text Solution

    |

  14. Calculate the value of A, if : (cosec2A-2)(cot3A-1)=0

    Text Solution

    |

  15. If 2sinx^(@)-1=0 and x^(@) is an acute angle, find: (i) bsinx^(@)" ...

    Text Solution

    |

  16. If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@), find : x^(@)

    Text Solution

    |

  17. If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@), find : sin^(2)x^(@)+c...

    Text Solution

    |

  18. If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@), find : 1/(cos^(2)x^(@...

    Text Solution

    |

  19. If 4sin^(2)theta-1=0 and angle theta is less than 90^(@), find the val...

    Text Solution

    |

  20. If sin3A=1 and 0 le A le 90^(@), find : sin A

    Text Solution

    |

  21. If sin3A=1 and 0 le A le 90^(@), find : cos 2A

    Text Solution

    |