Home
Class 9
MATHS
Find the value of : cos^(2)60^(@)+sec^...

Find the value of :
`cos^(2)60^(@)+sec^(2)30^(@)+tan^(2)45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos^2 60^\circ + \sec^2 30^\circ + \tan^2 45^\circ \), we will evaluate each trigonometric function step by step. ### Step 1: Calculate \( \cos^2 60^\circ \) We know that: \[ \cos 60^\circ = \frac{1}{2} \] Thus, \[ \cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4} \] ### Step 2: Calculate \( \sec^2 30^\circ \) We know that: \[ \sec 30^\circ = \frac{1}{\cos 30^\circ} \] And since \( \cos 30^\circ = \frac{\sqrt{3}}{2} \), we have: \[ \sec 30^\circ = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] Thus, \[ \sec^2 30^\circ = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3} \] ### Step 3: Calculate \( \tan^2 45^\circ \) We know that: \[ \tan 45^\circ = 1 \] Thus, \[ \tan^2 45^\circ = 1^2 = 1 \] ### Step 4: Combine the results Now we can combine all the results: \[ \cos^2 60^\circ + \sec^2 30^\circ + \tan^2 45^\circ = \frac{1}{4} + \frac{4}{3} + 1 \] ### Step 5: Find a common denominator The common denominator for \( 4 \), \( 3 \), and \( 1 \) is \( 12 \). We convert each term: \[ \frac{1}{4} = \frac{3}{12}, \quad \frac{4}{3} = \frac{16}{12}, \quad 1 = \frac{12}{12} \] ### Step 6: Add the fractions Now we add the fractions: \[ \frac{3}{12} + \frac{16}{12} + \frac{12}{12} = \frac{3 + 16 + 12}{12} = \frac{31}{12} \] ### Final Answer Thus, the final value is: \[ \cos^2 60^\circ + \sec^2 30^\circ + \tan^2 45^\circ = \frac{31}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

Find the value of : cos^(2)60^(@)+sin^(2)30^(@)

Find the value of : cos^(2)60^(@)+sin^(2)30^(@)

Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

Find the value of : sin^(2)30^(@)+cos^(2)30^(@)+cot^(2)45^(@)

Find the value of : sin^(2)30^(@)+cos^(2)30^(@)+cot^(2)45^(@)

Find the value of : 3sin^(2)30^(@)+2tan^(2)60^(@)-5cos^(2)45^(@)

Find the value of : 3sin^(2)30^(@)+2tan^(2)60^(@)-5cos^(2)45^(@)

Find the value of : tan30^(@)tan60^(@)

Find the value of : tan30^(@)tan60^(@)

ICSE-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES-EXERCISE 23(A)
  1. Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

    Text Solution

    |

  2. Find the value of : sin^(2)30^(@)+cos^(2)30^(@)+cot^(2)45^(@)

    Text Solution

    |

  3. Find the value of : cos^(2)60^(@)+sec^(2)30^(@)+tan^(2)45^(@)

    Text Solution

    |

  4. Find the value of : tan^(2)30^(@)+tan^(2)45^(@)+tan^(2)60^(@)

    Text Solution

    |

  5. Find the value of : (tan45^(@))/(cosec30^(@))+(sec60^(@))/(cot45^(@)...

    Text Solution

    |

  6. Find the value of : 3sin^(2)30^(@)+2tan^(2)60^(@)-5cos^(2)45^(@)

    Text Solution

    |

  7. Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

    Text Solution

    |

  8. Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

    Text Solution

    |

  9. Prove that : cosec^(2)45^(@)-cot^(2)45^(@)=1

    Text Solution

    |

  10. Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

    Text Solution

    |

  11. Prove that : ((tan60^(@)+1)/(tan60^(@)-1))^(2)=(1+cos30^(@))/(1-cos3...

    Text Solution

    |

  12. Prove that : 3cosec^(2)60^(@)-2cot^(2)30^(@)+sec^(2)45^(@)=0.

    Text Solution

    |

  13. Prove that : sin(2 times 30^(@))=(2tan30^(@))/(1+tan^(2)30^(@))

    Text Solution

    |

  14. Prove that : cos(2 times 30^(@))=(1-tan^(2)30^(@))/(1+tan^(2)30^(@))

    Text Solution

    |

  15. Prove that : tan(2 times 30^(@))=(2tan30^(@))/(1-tan^(2)30^(@))

    Text Solution

    |

  16. ABC is an isosceles right-angled triangle. Assuming AB = BC = x, find ...

    Text Solution

    |

  17. Prove that : sin60^(@)=2sin30^(@)cos30^(@).

    Text Solution

    |

  18. Prove that : 4(sin^(4)30^(@)+cos^(4)60^(@))-3(cos^(2)45^(@)-sin^(2)...

    Text Solution

    |

  19. If sinx =cosx and x is acute, state the value of x.

    Text Solution

    |

  20. If secA=cosecA" and "0^(@) le A le 90^(@), state the value of A.

    Text Solution

    |