Home
Class 9
MATHS
Evaluate : (cos3A-3cos4A)/(sin3A+2sin4...

Evaluate :
`(cos3A-3cos4A)/(sin3A+2sin4A)," when "A=15^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\cos 3A - 3\cos 4A) / (\sin 3A + 2\sin 4A)\) when \(A = 15^\circ\), we will follow these steps: ### Step 1: Substitute \(A\) in the expression We start by substituting \(A = 15^\circ\) into the expression: \[ \cos(3A) = \cos(3 \times 15^\circ) = \cos(45^\circ) \] \[ \cos(4A) = \cos(4 \times 15^\circ) = \cos(60^\circ) \] \[ \sin(3A) = \sin(3 \times 15^\circ) = \sin(45^\circ) \] \[ \sin(4A) = \sin(4 \times 15^\circ) = \sin(60^\circ) \] ### Step 2: Write the expression with substituted values Now we can rewrite the expression: \[ \frac{\cos(45^\circ) - 3\cos(60^\circ)}{\sin(45^\circ) + 2\sin(60^\circ)} \] ### Step 3: Use known values of trigonometric functions We know the following values: \[ \cos(45^\circ) = \frac{1}{\sqrt{2}}, \quad \cos(60^\circ) = \frac{1}{2}, \quad \sin(45^\circ) = \frac{1}{\sqrt{2}}, \quad \sin(60^\circ) = \frac{\sqrt{3}}{2} \] ### Step 4: Substitute the known values into the expression Substituting these values into the expression gives: \[ \frac{\frac{1}{\sqrt{2}} - 3 \times \frac{1}{2}}{\frac{1}{\sqrt{2}} + 2 \times \frac{\sqrt{3}}{2}} \] ### Step 5: Simplify the numerator and denominator Calculating the numerator: \[ \frac{1}{\sqrt{2}} - \frac{3}{2} = \frac{1 - \frac{3\sqrt{2}}{2}}{\sqrt{2}} = \frac{2 - 3\sqrt{2}}{2\sqrt{2}} \] Calculating the denominator: \[ \frac{1}{\sqrt{2}} + \sqrt{3} = \frac{1 + \sqrt{6}}{\sqrt{2}} \] ### Step 6: Combine the results Now we can combine the results: \[ \frac{\frac{2 - 3\sqrt{2}}{2\sqrt{2}}}{\frac{1 + \sqrt{6}}{\sqrt{2}}} = \frac{2 - 3\sqrt{2}}{2(1 + \sqrt{6})} \] ### Step 7: Rationalize if necessary To rationalize, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(2 - 3\sqrt{2})(1 - \sqrt{6})}{2((1 + \sqrt{6})(1 - \sqrt{6}))} \] The denominator simplifies to: \[ 2(1 - 6) = -10 \] ### Final Expression Thus, the final expression becomes: \[ \frac{(2 - 3\sqrt{2})(1 - \sqrt{6})}{-10} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) (cos 3A - 2 cos 4A)/(sin 3 A + 2 sin 4A) , when A = 15^(@) (ii) (3 sin 3B + 2 cos(2B + 5^(@)))/(2 cos 3B - sin(2B - 10^(@))) , when B = 20^(@)

Evaluate (cos3 theta-2cos 4theta)/(sin 3 theta+2sin 4theta), when theta=150^(@) .

Prove that: (cos2A+cos3A+cos4A)/(sin2A+sin3A+sin4A)= cot3A

Prove that: (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

If A=30^(@) , show that : (cos^(3)A-cos3A)/(cosA)+(sin^(3)A+sin3A)/(sinA)=3

Prove that: (cos4A+cos3A+cos2A)/(sin4A+sin3A+sin2A)=cot3A

Prove that: (sin3A cos4A-sin Acos2A)/(sin4A sin A+cos6A cos A)=tan2A

Prove that : cos^3 A cos 3A + sin^3 A sin 3A = cos^3 2A

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

If A = 30^(@) , show that : (i) (1 + sin 2A + cos 2A)/(sin A + cos A) = 2 cos A (ii) (cos^(3)A - cos 3A)/(cos A) + (sin^(3)A + sin 3A)/(sin A) = 3

ICSE-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES-EXERCISE 23(A)
  1. State for any acute angle theta whether : tantheta increases or decr...

    Text Solution

    |

  2. If sqrt(3)=1*732, find (correct to two decimal places) the value of th...

    Text Solution

    |

  3. Evaluate : (cos3A-3cos4A)/(sin3A+2sin4A)," when "A=15^(@).

    Text Solution

    |

  4. Evaluate : (3sin3B+2cos(2B+5^(@)))/(2cos3B-sin(2B-10^(@))), when B...

    Text Solution

    |

  5. Find the value of : sin30^(@)cos30^(@)

    Text Solution

    |

  6. Find the value of : tan30^(@)tan60^(@)

    Text Solution

    |

  7. Find the value of : cos^(2)60^(@)+sin^(2)30^(@)

    Text Solution

    |

  8. Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

    Text Solution

    |

  9. Find the value of : sin^(2)30^(@)+cos^(2)30^(@)+cot^(2)45^(@)

    Text Solution

    |

  10. Find the value of : cos^(2)60^(@)+sec^(2)30^(@)+tan^(2)45^(@)

    Text Solution

    |

  11. Find the value of : tan^(2)30^(@)+tan^(2)45^(@)+tan^(2)60^(@)

    Text Solution

    |

  12. Find the value of : (tan45^(@))/(cosec30^(@))+(sec60^(@))/(cot45^(@)...

    Text Solution

    |

  13. Find the value of : 3sin^(2)30^(@)+2tan^(2)60^(@)-5cos^(2)45^(@)

    Text Solution

    |

  14. Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

    Text Solution

    |

  15. Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

    Text Solution

    |

  16. Prove that : cosec^(2)45^(@)-cot^(2)45^(@)=1

    Text Solution

    |

  17. Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

    Text Solution

    |

  18. Prove that : ((tan60^(@)+1)/(tan60^(@)-1))^(2)=(1+cos30^(@))/(1-cos3...

    Text Solution

    |

  19. Prove that : 3cosec^(2)60^(@)-2cot^(2)30^(@)+sec^(2)45^(@)=0.

    Text Solution

    |

  20. Prove that : sin(2 times 30^(@))=(2tan30^(@))/(1+tan^(2)30^(@))

    Text Solution

    |