Home
Class 9
MATHS
Evaluate : (3sin3B+2cos(2B+5^(@)))/(2c...

Evaluate :
`(3sin3B+2cos(2B+5^(@)))/(2cos3B-sin(2B-10^(@)))`,
when `B=20^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{3\sin(3B) + 2\cos(2B + 5^\circ)}{2\cos(3B) - \sin(2B - 10^\circ)} \] when \( B = 20^\circ \), we will follow these steps: ### Step 1: Substitute \( B = 20^\circ \) First, we substitute \( B \) in the expression: \[ 3B = 3 \times 20^\circ = 60^\circ \] \[ 2B = 2 \times 20^\circ = 40^\circ \] Now, we can rewrite the expression as: \[ \frac{3\sin(60^\circ) + 2\cos(40^\circ + 5^\circ)}{2\cos(60^\circ) - \sin(40^\circ - 10^\circ)} \] ### Step 2: Simplify the angles Now, simplify the angles in the cosine and sine functions: \[ \cos(40^\circ + 5^\circ) = \cos(45^\circ) \] \[ \sin(40^\circ - 10^\circ) = \sin(30^\circ) \] Now, the expression becomes: \[ \frac{3\sin(60^\circ) + 2\cos(45^\circ)}{2\cos(60^\circ) - \sin(30^\circ)} \] ### Step 3: Calculate the trigonometric values Using known values of trigonometric functions: - \( \sin(60^\circ) = \frac{\sqrt{3}}{2} \) - \( \cos(45^\circ) = \frac{1}{\sqrt{2}} \) - \( \cos(60^\circ) = \frac{1}{2} \) - \( \sin(30^\circ) = \frac{1}{2} \) Substituting these values into the expression gives: \[ \frac{3 \cdot \frac{\sqrt{3}}{2} + 2 \cdot \frac{1}{\sqrt{2}}}{2 \cdot \frac{1}{2} - \frac{1}{2}} \] ### Step 4: Simplify the numerator and denominator Calculating the numerator: \[ 3 \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2} \] \[ 2 \cdot \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2} \] So the numerator becomes: \[ \frac{3\sqrt{3}}{2} + \sqrt{2} \] Calculating the denominator: \[ 2 \cdot \frac{1}{2} = 1 \] \[ 1 - \frac{1}{2} = \frac{1}{2} \] ### Step 5: Final expression Now, we have: \[ \frac{\frac{3\sqrt{3}}{2} + \sqrt{2}}{\frac{1}{2}} = 2\left(\frac{3\sqrt{3}}{2} + \sqrt{2}\right) \] Distributing the 2: \[ = 3\sqrt{3} + 2\sqrt{2} \] ### Final Answer Thus, the evaluated expression is: \[ 3\sqrt{3} + 2\sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos
  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(C)|118 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) (cos 3A - 2 cos 4A)/(sin 3 A + 2 sin 4A) , when A = 15^(@) (ii) (3 sin 3B + 2 cos(2B + 5^(@)))/(2 cos 3B - sin(2B - 10^(@))) , when B = 20^(@)

Prove that : sin^(2)Acos^(2)B-cos^(2)Asin^(2)B=sin^(2)A-sin^(2)B

The value of (cos^3 20^@-cos^3 70^@)/(sin^3 70^@-sin^3 20^@) is (a) 1/2 (b) 1/(sqrt(2)) (c) 1 (d) 2

If A = 60 ^(@) and B = 30 ^(@) , find the value of (sin A cos B+ cos A sin B)^(2) + (cos A cos B - sin A sin B )^(2)

Prove: sin^2Acos^2B-cos^2Asin^2B=sin^2A-sin^2B

Find the value of (a) sin(pi)/(10)+sin(13pi)/(10) (b) cos^(2)48^(@)=sin^(2) 12^(@)

The value of |{:(sin A ,cos A ),(- sin B, cos B):}| , when A = 54^(@) , B = 36^(@) is a) 0 b) 1 c) -1 d) 2

Prove that: i) sin(A+B)cos(A-B)-cos(A+B)sin(A-B)=sin2B ii) cos(45^(@)-A)cos(45^(@)-B)-sin(45^(@)-A)sin(45^(@)-B)=sin(A+B)

Show that in any Delta ABC, a ^(3) cos 3B+3a^(2)b cos (2B-A)+3ab^(2) cos (B-2A) +b^(3) cos 3A =c^(3)

sin(A+B)=1/sqrt(2) cos(A-B)=sqrt3|2

ICSE-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES-EXERCISE 23(A)
  1. If sqrt(3)=1*732, find (correct to two decimal places) the value of th...

    Text Solution

    |

  2. Evaluate : (cos3A-3cos4A)/(sin3A+2sin4A)," when "A=15^(@).

    Text Solution

    |

  3. Evaluate : (3sin3B+2cos(2B+5^(@)))/(2cos3B-sin(2B-10^(@))), when B...

    Text Solution

    |

  4. Find the value of : sin30^(@)cos30^(@)

    Text Solution

    |

  5. Find the value of : tan30^(@)tan60^(@)

    Text Solution

    |

  6. Find the value of : cos^(2)60^(@)+sin^(2)30^(@)

    Text Solution

    |

  7. Find the value of : cosec^(2)60^(@)-tan^(2)30^(@)

    Text Solution

    |

  8. Find the value of : sin^(2)30^(@)+cos^(2)30^(@)+cot^(2)45^(@)

    Text Solution

    |

  9. Find the value of : cos^(2)60^(@)+sec^(2)30^(@)+tan^(2)45^(@)

    Text Solution

    |

  10. Find the value of : tan^(2)30^(@)+tan^(2)45^(@)+tan^(2)60^(@)

    Text Solution

    |

  11. Find the value of : (tan45^(@))/(cosec30^(@))+(sec60^(@))/(cot45^(@)...

    Text Solution

    |

  12. Find the value of : 3sin^(2)30^(@)+2tan^(2)60^(@)-5cos^(2)45^(@)

    Text Solution

    |

  13. Prove that : sin60^(@)cos30^(@)+cos60^(@).sin30^(@)=1

    Text Solution

    |

  14. Prove that : cos30^(@).cos60^(@)-sin30^(@).sin60^(@)=0

    Text Solution

    |

  15. Prove that : cosec^(2)45^(@)-cot^(2)45^(@)=1

    Text Solution

    |

  16. Prove that : cos^(2)30^(@)-sin^(2)30^(@)=cos60^(@)

    Text Solution

    |

  17. Prove that : ((tan60^(@)+1)/(tan60^(@)-1))^(2)=(1+cos30^(@))/(1-cos3...

    Text Solution

    |

  18. Prove that : 3cosec^(2)60^(@)-2cot^(2)30^(@)+sec^(2)45^(@)=0.

    Text Solution

    |

  19. Prove that : sin(2 times 30^(@))=(2tan30^(@))/(1+tan^(2)30^(@))

    Text Solution

    |

  20. Prove that : cos(2 times 30^(@))=(1-tan^(2)30^(@))/(1+tan^(2)30^(@))

    Text Solution

    |