Home
Class 9
MATHS
If sin3A=1 and 0 le A le 90^(@), find : ...

If `sin3A=1 and 0 le A le 90^(@)`, find :
`tan^(2)A-1/(cos^(2)A)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^2 A - \frac{1}{\cos^2 A} \) given that \( \sin 3A = 1 \) and \( 0 \leq A \leq 90^\circ \). ### Step-by-Step Solution: 1. **Understanding the given equation**: We have \( \sin 3A = 1 \). The sine function equals 1 at \( 90^\circ \) and its odd multiples. Therefore, we can set: \[ 3A = 90^\circ \] 2. **Solving for A**: Dividing both sides by 3 gives: \[ A = \frac{90^\circ}{3} = 30^\circ \] 3. **Finding \( \tan^2 A \)**: Now, we need to calculate \( \tan^2 A \) when \( A = 30^\circ \): \[ \tan 30^\circ = \frac{1}{\sqrt{3}} \quad \Rightarrow \quad \tan^2 30^\circ = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] 4. **Finding \( \cos^2 A \)**: Next, we calculate \( \cos^2 A \) when \( A = 30^\circ \): \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \quad \Rightarrow \quad \cos^2 30^\circ = \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{3}{4} \] 5. **Calculating \( \frac{1}{\cos^2 A} \)**: Now we find \( \frac{1}{\cos^2 A} \): \[ \frac{1}{\cos^2 30^\circ} = \frac{1}{\frac{3}{4}} = \frac{4}{3} \] 6. **Putting it all together**: Now we substitute back into the expression: \[ \tan^2 A - \frac{1}{\cos^2 A} = \frac{1}{3} - \frac{4}{3} \] Simplifying this gives: \[ = \frac{1 - 4}{3} = \frac{-3}{3} = -1 \] ### Final Answer: Thus, the final answer is: \[ \tan^2 A - \frac{1}{\cos^2 A} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

If sin3A=1 and 0 le A le 90^(@) , find : sin A

If sin3A=1 and 0 le A le 90^(@) , find : sin A

If sin3A=1 and 0 le A le 90^(@) , find : cos 2A

If sin3A=1 and 0 le A le 90^(@) , find : cos 2A

If 4 cos ^(2) A -3 =0 and 0^(@) le A le 90 ^(@) find : tan ^(2) A+ cos ^(2) A

If sin 3A = 1 and 0 le A le 90^(@) . Find : (i) sin A (ii) cos 2A (iii) tan^(2)A - (1)/(cos^(2)A)

If 4cos^(2)x(@)-1=0 and 0 le x^(@) le 90^(@) , find : 1/(cos^(2)x^(@))-tan^(2)x^(@)

If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@) , find : 1/(cos^(2)x^(@))-tan^(2)x^(@)

If 4cos^(2)x(@)-1=0 and 0 le x^(@) le 90^(@) , find : sin^(2)x^(@)+cos^(2)x^(@)

If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@) , find : sin^(2)x^(@)+cos^(2)x^(@)