Home
Class 9
MATHS
Find the magnitude of angle A, if : ta...

Find the magnitude of angle A, if :
`tanA-2cosAtanA+2cosA-1=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan A - 2 \cos A \tan A + 2 \cos A - 1 = 0 \), we can follow these steps: ### Step 1: Rearrange the equation Start with the given equation: \[ \tan A - 2 \cos A \tan A + 2 \cos A - 1 = 0 \] We can rearrange it as: \[ \tan A (1 - 2 \cos A) + (2 \cos A - 1) = 0 \] ### Step 2: Factor out common terms Now, we can factor out the common terms: \[ (1 - 2 \cos A)(\tan A - 1) = 0 \] ### Step 3: Set each factor to zero This gives us two equations to solve: 1. \( 1 - 2 \cos A = 0 \) 2. \( \tan A - 1 = 0 \) ### Step 4: Solve the first equation From the first equation: \[ 1 - 2 \cos A = 0 \implies 2 \cos A = 1 \implies \cos A = \frac{1}{2} \] The angles for which \( \cos A = \frac{1}{2} \) are: \[ A = 60^\circ \text{ or } A = 300^\circ \] ### Step 5: Solve the second equation From the second equation: \[ \tan A - 1 = 0 \implies \tan A = 1 \] The angle for which \( \tan A = 1 \) is: \[ A = 45^\circ \text{ or } A = 225^\circ \] ### Step 6: List all possible angles From both equations, we have the possible angles: 1. From \( \cos A = \frac{1}{2} \): \( A = 60^\circ, 300^\circ \) 2. From \( \tan A = 1 \): \( A = 45^\circ, 225^\circ \) ### Step 7: Find the magnitude of angle A Since the question asks for the magnitude of angle A, we consider only the angles in the range \( 0^\circ \) to \( 360^\circ \): - Possible angles are \( 60^\circ, 300^\circ, 45^\circ, 225^\circ \). Thus, the magnitudes of angle A are: \[ A = 60^\circ, 45^\circ, 300^\circ, 225^\circ \] ### Final Answer The magnitudes of angle A are \( 60^\circ \) and \( 45^\circ \) (as standard angles). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

Find the magnitude of angle A, if : 2tan3Acos3A-tan3A+1=2cos3A

Find the magnitude of angle A, if : 2sinAcosA-cosA-2sinA+1=0

Find the magnitude of angle A, if : 2sinAcosA-cosA-2sinA+1=0

Find the magnitude of angle A, if : 2cos^(2)A-3cosA+1=0

Find the magnitude of angle A, if : 2sin^(2)A-3sinA+1=0

Find the magnitude of angle A, if : 4sinAsin2A+1-2sin2A=2sinA

Find the magnitude of angle A, if : (i) 2 cos^(2)A - 3 cos A + 1 = 0 (ii) 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A

Find the magnitude of angle A, if : 3cot^(2)(A-5^(@))=1

Find the magnitude of angle A, if : 3cot^(2)(A-5^(@))=1

Find the magnitude of angle A, if : sin^(2)2A+sin^(2)60^(@)=1