Home
Class 9
MATHS
Find the magnitude of angle A, if : 2c...

Find the magnitude of angle A, if :
`2cos^(2)A-3cosA+1=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2\cos^2 A - 3\cos A + 1 = 0\), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2\cos^2 A - 3\cos A + 1 = 0 \] ### Step 2: Factor the quadratic equation We will factor the quadratic expression. We can rewrite it as: \[ 2\cos^2 A - 2\cos A - \cos A + 1 = 0 \] Now, we can group the terms: \[ (2\cos A - 1)(\cos A - 1) = 0 \] ### Step 3: Set each factor to zero Now, we set each factor equal to zero: 1. \(2\cos A - 1 = 0\) 2. \(\cos A - 1 = 0\) ### Step 4: Solve for \(\cos A\) From the first equation: \[ 2\cos A = 1 \implies \cos A = \frac{1}{2} \] From the second equation: \[ \cos A = 1 \] ### Step 5: Find angles corresponding to \(\cos A\) Now we find the angles \(A\): 1. For \(\cos A = \frac{1}{2}\): - The angles are \(A = 60^\circ\) and \(A = 300^\circ\) (in the range of 0° to 360°). 2. For \(\cos A = 1\): - The angle is \(A = 0^\circ\). ### Step 6: Compile the results Thus, the possible values for angle \(A\) are: - \(A = 0^\circ\) - \(A = 60^\circ\) - \(A = 300^\circ\) ### Step 7: State the final answer The magnitude of angle \(A\) can be: - \(0^\circ\) - \(60^\circ\) - \(300^\circ\)
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

Find the magnitude of angle A, if : (i) 2 cos^(2)A - 3 cos A + 1 = 0 (ii) 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A

Find the magnitude of angle A, if : 2sin^(2)A-3sinA+1=0

Find the magnitude of angle A, if : 3cot^(2)(A-5^(@))=1

Find the magnitude of angle A, if : 3cot^(2)(A-5^(@))=1

Find the magnitude of angle A, if : 2sinAcosA-cosA-2sinA+1=0

Find the magnitude of angle A, if : 2sinAcosA-cosA-2sinA+1=0

Find the magnitude of angle A, if : tanA-2cosAtanA+2cosA-1=0

Find the magnitude of angle A, if : 2tan3Acos3A-tan3A+1=2cos3A

Find the magnitude of angle A, if : sin^(2)2A+sin^(2)60^(@)=1

Find the magnitude of angle A, if : 4sinAsin2A+1-2sin2A=2sinA