Home
Class 9
MATHS
Find the magnitude of angle A, if : 2t...

Find the magnitude of angle A, if :
`2tan3Acos3A-tan3A+1=2cos3A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\tan(3A)\cos(3A) - \tan(3A) + 1 = 2\cos(3A) \), we will follow these steps: ### Step 1: Rearrange the equation Start with the original equation: \[ 2\tan(3A)\cos(3A) - \tan(3A) + 1 = 2\cos(3A) \] Rearranging gives us: \[ 2\tan(3A)\cos(3A) - \tan(3A) - 2\cos(3A) + 1 = 0 \] ### Step 2: Factor out common terms Notice that we can group the terms involving \(\tan(3A)\): \[ \tan(3A)(2\cos(3A) - 1) + (1 - 2\cos(3A)) = 0 \] This can be rewritten as: \[ (2\cos(3A) - 1)(\tan(3A) - 1) = 0 \] ### Step 3: Set each factor to zero Now we have two factors that can be set to zero: 1. \( 2\cos(3A) - 1 = 0 \) 2. \( \tan(3A) - 1 = 0 \) ### Step 4: Solve the first equation From \( 2\cos(3A) - 1 = 0 \): \[ 2\cos(3A) = 1 \implies \cos(3A) = \frac{1}{2} \] The angles for which \(\cos(3A) = \frac{1}{2}\) are: \[ 3A = 60^\circ + 360^\circ n \quad \text{or} \quad 3A = 300^\circ + 360^\circ n \] where \(n\) is any integer. ### Step 5: Solve for A Dividing by 3 gives: \[ A = 20^\circ + 120^\circ n \quad \text{or} \quad A = 100^\circ + 120^\circ n \] ### Step 6: Solve the second equation From \( \tan(3A) - 1 = 0 \): \[ \tan(3A) = 1 \] The angles for which \(\tan(3A) = 1\) are: \[ 3A = 45^\circ + 180^\circ n \] Dividing by 3 gives: \[ A = 15^\circ + 60^\circ n \] ### Step 7: Find possible values of A From the solutions: 1. From \(\cos(3A) = \frac{1}{2}\): - \(A = 20^\circ\) or \(A = 100^\circ\) 2. From \(\tan(3A) = 1\): - \(A = 15^\circ\) ### Final Answer Thus, the possible values for the angle \(A\) are: \[ A = 15^\circ, 20^\circ, 100^\circ \] ### Magnitude of angle A The magnitude of angle \(A\) can be stated as: \[ \text{Magnitude of angle A} = 15^\circ, 20^\circ \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

Find the magnitude of angle A, if : 2cos^(2)A-3cosA+1=0

Find the magnitude of angle A, if : (i) 2 cos^(2)A - 3 cos A + 1 = 0 (ii) 2 tan 3A cos 3A - tan 3A + 1 = 2 cos 3A

Find A, if : (secA-2)(tan3A-1)=0

Find the value of tan { cot ^(-1) ((-2)/3)}

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))

Find the value of expression: sin(2tan^(-1)1/3)+cos(tan^(-1)2sqrt(2))

Find the set of values of x for which (tan 3x - tan 2x)/ (1+ tan3x tan 2x) = 1

Find the value of tan^(-1)(tan'(2pi)/(3)) .

Find the principal value of tan^(-1){cos((3pi)/2)}