Home
Class 9
MATHS
In DeltaABC, angleB=90^@), AB=y" units",...

In `DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units"`, AC = 2 units and angle `A=x^(@)`, find :
use `cosx^(@)` to find the value of y.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of right triangles and trigonometric ratios. ### Step-by-Step Solution: 1. **Identify the Triangle and Given Values:** - We have a right triangle \( \Delta ABC \) where \( \angle B = 90^\circ \). - The sides are given as follows: - \( AB = y \) units (opposite to angle A) - \( BC = \sqrt{3} \) units (adjacent to angle A) - \( AC = 2 \) units (hypotenuse) 2. **Use the Sine Function:** - We know that: \[ \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{AB}{AC} \] - For angle \( A \) (which is \( x \)): \[ \sin x = \frac{AB}{AC} = \frac{y}{2} \] 3. **Calculate \( \sin x \) Using the Given Side BC:** - We can also use the Pythagorean theorem to find \( y \): \[ AC^2 = AB^2 + BC^2 \] - Substituting the values: \[ 2^2 = y^2 + (\sqrt{3})^2 \] \[ 4 = y^2 + 3 \] - Rearranging gives: \[ y^2 = 4 - 3 = 1 \] - Taking the square root: \[ y = 1 \text{ (since length cannot be negative)} \] 4. **Using Cosine to Verify:** - We can also find \( y \) using \( \cos x \): \[ \cos x = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{BC}{AC} = \frac{\sqrt{3}}{2} \] - We know that \( \cos 60^\circ = \frac{1}{2} \), so: \[ \cos x = \frac{1}{2} \] - From the cosine definition for angle \( A \): \[ \cos x = \frac{y}{2} \] - Setting these equal gives: \[ \frac{y}{2} = \frac{1}{2} \] - Solving for \( y \): \[ y = 1 \] ### Final Answer: Thus, the value of \( y \) is \( 1 \) unit. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL RATIOS OF STANDARD ANGLES

    ICSE|Exercise EXERCISE 23(B)|34 Videos
  • TRIGONOMETRICAL RATIOS

    ICSE|Exercise EXERCISE 22(B)|50 Videos
  • TRIGONOMETRY

    ICSE|Exercise TOPIC -4 ( COMPLEMENTARY ANGLES ) (4 MARKS QUESTIONS )|4 Videos

Similar Questions

Explore conceptually related problems

In DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units" , AC = 2 units and angle A=x^(@) , find : x^(@)

In DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units" , AC = 2 units and angle A=x^(@) , find : x^(@)

In DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units" , AC = 2 units and angle A=x^(@) , find : sinx^(@)

In DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units" , AC = 2 units and angle A=x^(@) , find : tanx^(@)

If A = (2,-3) , B= (10,y) and AB = 10 units find the value of y .

In DeltaABC , angle A=90^(@) , side AB = x cm, AC = (x+5) cm and area = 150 cm^(2) . Find the sides of triangle.

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : cos A

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : tan C .

In triangle ABC , angle B = 90 ^(@) , AB = 40 , AC + BC = 80 , Find : sin A

In a Delta ABC, if angle C =105^(@), angleB=45^(@) and length of side AC =2 units, then the length of th side AB is equal to

ICSE-TRIGONOMETRICAL RATIOS OF STANDARD ANGLES-EXERCISE 23(C)
  1. In DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units", AC = 2 u...

    Text Solution

    |

  2. In DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units", AC = 2 u...

    Text Solution

    |

  3. In DeltaABC, angleB=90^@), AB=y" units", BC=sqrt(3) " units", AC = 2 u...

    Text Solution

    |

  4. If 2cos(A+B)=2sin(A-B)=1, find the values of A and B.

    Text Solution

    |

  5. Solve the following equations for A, if : 2sinA=1

    Text Solution

    |

  6. Solve the following equations for A, if : 2cos2A=1

    Text Solution

    |

  7. Solve the following equations for A, if : sin3A=sqrt(3)/2

    Text Solution

    |

  8. Solve the following equations for A, if : sec2A=2

    Text Solution

    |

  9. Solve the following equations for A, if : sqrt(3)tanA=1

    Text Solution

    |

  10. Solve the following equations for A, if : tan3A=1

    Text Solution

    |

  11. Solve the following equations for A, if : 2sin3A=1

    Text Solution

    |

  12. Solve the following equations for A, if : sqrt(3)cot2A=1

    Text Solution

    |

  13. Calculate the value of A, if : (sinA-1)(2cosA-1)=0

    Text Solution

    |

  14. Calculate the value of A, if : (tanA-1)(cosec3A-1)=0

    Text Solution

    |

  15. Calculate the value of A, if : (sec2A-1)(cosec3A-1)=0

    Text Solution

    |

  16. Calculate the value of A, if : cos3A.(2sin2A-1)=0

    Text Solution

    |

  17. Calculate the value of A, if : (cosec2A-2)(cot3A-1)=0

    Text Solution

    |

  18. If 2sinx^(@)-1=0 and x^(@) is an acute angle, find: (i) bsinx^(@)" ...

    Text Solution

    |

  19. If 4cos^(2)x^(@)-1=0 and 0 le x^(@) le 90^(@), find : x^(@)

    Text Solution

    |

  20. If 4cos^(2)x(@)-1=0 and 0 le x^(@) le 90^(@), find : sin^(2)x^(@)+co...

    Text Solution

    |