Home
Class 9
MATHS
Evaluate : 3(sin 72^(@))/(cos 18^(@))-...

Evaluate :
`3(sin 72^(@))/(cos 18^(@))-(sec 32^(@))/(cosec 58^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 3 \left( \frac{\sin 72^\circ}{\cos 18^\circ} \right) - \left( \frac{\sec 32^\circ}{\csc 58^\circ} \right) \), we can follow these steps: ### Step 1: Rewrite the trigonometric functions We know that: - \( \cos(90^\circ - \theta) = \sin(\theta) \) - \( \sec(90^\circ - \theta) = \csc(\theta) \) Using these identities, we can rewrite \( \sin 72^\circ \) and \( \sec 32^\circ \): - \( \sin 72^\circ = \cos(90^\circ - 72^\circ) = \cos 18^\circ \) - \( \sec 32^\circ = \csc(90^\circ - 32^\circ) = \csc 58^\circ \) ### Step 2: Substitute the rewritten functions into the expression Now, substituting these identities into the original expression: \[ 3 \left( \frac{\sin 72^\circ}{\cos 18^\circ} \right) = 3 \left( \frac{\cos 18^\circ}{\cos 18^\circ} \right) = 3 \] And for the second part: \[ \frac{\sec 32^\circ}{\csc 58^\circ} = \frac{\csc 58^\circ}{\csc 58^\circ} = 1 \] ### Step 3: Combine the results Now we can combine the results: \[ 3 - 1 = 2 \] ### Final Answer Thus, the evaluated expression is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEMENTARY ANGLES

    ICSE|Exercise EXERCISE |64 Videos
  • CO-ORDINATE GEOMETRY

    ICSE|Exercise QUESTIONS|12 Videos
  • COMPOUND INTEREST

    ICSE|Exercise TOPIC 2 (4 Marks Questions)|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (sec 75^(@))/(cosec 15^(@))

Evaluate : (cos 75^(@))/ (sin 15^(@)) + (sin 12^(@))/ (cos 78^(@)) - (cos 18^(@))/ (sin 72^(@))

Without using trigonometric tables , evaluate : (i) (sin11^(@))/(cos79^(@)) (ii) (sec15^(@))/("cosec"75^(@)) (iii) (tan54^(@))/(cot36^(@)) (iv) (cos68^(@))/(sin22^(@)) (v) ("cosec"24^(@))/(sec66^(@)) (vi) (cot18^(@))/(tan72^(@))

Evaluate (sin35^(@))/(cos55^(@))+(sec20^(@))/("cosec"70^(@)) .

Evaluate : (cos 58 ^(@))/(sin 32^(@)) +(sin 22^(@))/(cos 68^(@)) - cos 90 ^(@)

Evaluate: ((cos 47^(@))/(sin 43^(@)))^(2)+((sin72^(2))/(cos 18^(@)))^(2)-2cos^(2)45^(@)

Show that : (sin 26^(@))/ (sec 64^(@)) + (cos 26^(@))/ (cosec 64^(@)) = 1

Without using trigonometric tables evaluate. ("sin"65^(@))/("cos"25^(@))+("cos"32^(@))/("sin"58^(@))-"sin"28^(@)."sec"62^(@)+"cosec"^(2)30^(@)

Without using trigonometric tables , evaluate : (i) (sin40^(@))/(cos50^(@))+(3tan50^(@))/(cot40^(@)) (ii) (sec37^(@))/("cosec "53^(@))-(tan20^(@))/(cot70^(@)) (iii) (cos74^(@))/(sin16^(@))+(sin12^(@))/(cos78^(@))-sin18^(@)sec72^(@) (iv) sin35^(@)sec55^(@)+(4sec32^(@))/("cosec "58^(@))

Evaluate the following : (i) (sin58^(@))/(cos32^(@)) (ii) (sec42^(@))/("cosec"48^(@)) (iii) (tan37^(@))/(cot53^(@))