Home
Class 9
MATHS
Evaluate : cosec(65^(@)+A)-sec(25^(@)-...

Evaluate :
`cosec(65^(@)+A)-sec(25^(@)-A)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \csc(65^\circ + A) - \sec(25^\circ - A) \), we can follow these steps: ### Step 1: Use the co-function identity We know from trigonometric identities that: \[ \sec(90^\circ - \theta) = \csc(\theta) \] In our case, we can express \( \csc(65^\circ + A) \) in terms of secant: \[ \csc(65^\circ + A) = \sec(90^\circ - (65^\circ + A)) = \sec(25^\circ - A) \] ### Step 2: Substitute the identity into the expression Now, substitute this identity back into the original expression: \[ \csc(65^\circ + A) - \sec(25^\circ - A) = \sec(25^\circ - A) - \sec(25^\circ - A) \] ### Step 3: Simplify the expression Now, we can see that: \[ \sec(25^\circ - A) - \sec(25^\circ - A) = 0 \] ### Final Answer Thus, the evaluated expression is: \[ \boxed{0} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEMENTARY ANGLES

    ICSE|Exercise EXERCISE |64 Videos
  • CO-ORDINATE GEOMETRY

    ICSE|Exercise QUESTIONS|12 Videos
  • COMPOUND INTEREST

    ICSE|Exercise TOPIC 2 (4 Marks Questions)|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: sec^(2)18^(@)-cosec^(2)72^(@)

Evaluate : (i) 3 cos 80^(@) "cosec 10"^(@) + 2 sin 59^(@) sec 31^(@) (ii) (cos 70^(@))/(sin 20^(@)) + (cos 59^(@))/(sin 31^(@)) - 8 sin^(2) 30^(@) (iii) "cosec" (65^(@) + A) - sec(25^(@) - A)

Evaluate : (i) cosec 82^(@)-sec8^(@) (ii) sec 70^(@)sin 20^(@)+cos 20^(@)cosec 70^(@)

Evaluate : cos e c(65^0+theta)-sec(25^0-theta)-tan(55^0-theta)+cot(35^0+theta)

Evaluate: (sec 75^(@))/(cosec 15^(@))

Evaluate: cos^(2)25^(@)-sin^(2)65^(@)-tan^(2)45^(@)

Evaluate : (sec 42^(@))/( cosec 48^(@)) + ( 3 tan 50 ^(@))/( cot 40 ^(@)) - ( 2 cos 43 ^(@))/( sin 47^(@))

Find the value of sqrt(3)cosec20^(@)-sec20^(@)

Evaluate: int (sec ^(2) x)/(cosec ^(2) x) dx

Evaluate (sin35^(@))/(cos55^(@))+(sec20^(@))/("cosec"70^(@)) .