Home
Class 9
MATHS
Evaluate : (cos 70^(@))/(sin 20^(@))+(...

Evaluate :
`(cos 70^(@))/(sin 20^(@))+(cos 59^(@))/(sin31^(@))-8sin^(2)30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{\cos 70^\circ}{\sin 20^\circ} + \frac{\cos 59^\circ}{\sin 31^\circ} - 8\sin^2 30^\circ, \] we will follow these steps: ### Step 1: Use the co-function identity We know that \[ \sin(90^\circ - \theta) = \cos(\theta). \] Using this identity, we can rewrite \(\cos 70^\circ\) and \(\cos 59^\circ\): \[ \cos 70^\circ = \sin(90^\circ - 70^\circ) = \sin 20^\circ, \] \[ \cos 59^\circ = \sin(90^\circ - 59^\circ) = \sin 31^\circ. \] ### Step 2: Substitute in the expression Now, we can substitute these values back into the expression: \[ \frac{\sin 20^\circ}{\sin 20^\circ} + \frac{\sin 31^\circ}{\sin 31^\circ} - 8\sin^2 30^\circ. \] ### Step 3: Simplify the fractions The fractions simplify to: \[ 1 + 1 - 8\sin^2 30^\circ. \] ### Step 4: Calculate \(\sin 30^\circ\) We know that: \[ \sin 30^\circ = \frac{1}{2}. \] ### Step 5: Substitute \(\sin 30^\circ\) into the expression Now, substituting \(\sin 30^\circ\) into the expression gives: \[ 1 + 1 - 8\left(\frac{1}{2}\right)^2. \] ### Step 6: Calculate \(\sin^2 30^\circ\) Calculating \(\left(\frac{1}{2}\right)^2\): \[ \left(\frac{1}{2}\right)^2 = \frac{1}{4}. \] ### Step 7: Substitute \(\sin^2 30^\circ\) into the expression Now substituting this back gives: \[ 1 + 1 - 8 \cdot \frac{1}{4}. \] ### Step 8: Simplify the expression Calculating \(8 \cdot \frac{1}{4} = 2\): \[ 1 + 1 - 2 = 2 - 2 = 0. \] ### Final Answer Thus, the final answer is: \[ \boxed{0}. \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEMENTARY ANGLES

    ICSE|Exercise EXERCISE |64 Videos
  • CO-ORDINATE GEOMETRY

    ICSE|Exercise QUESTIONS|12 Videos
  • COMPOUND INTEREST

    ICSE|Exercise TOPIC 2 (4 Marks Questions)|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) 3 cos 80^(@) "cosec 10"^(@) + 2 sin 59^(@) sec 31^(@) (ii) (cos 70^(@))/(sin 20^(@)) + (cos 59^(@))/(sin 31^(@)) - 8 sin^(2) 30^(@) (iii) "cosec" (65^(@) + A) - sec(25^(@) - A)

Evaluate : (sin 80^(@))/(cos 10^(@))+sin 59^(@)sec 31^(@)

Evaluate : 3 cos 80^(@)cosec 10^(@)+2sin 59^(@)sec 31^(@)

Evaluate: ((cos 47^(@))/(sin 43^(@)))^(2)+((sin72^(2))/(cos 18^(@)))^(2)-2cos^(2)45^(@)

The value of (cos25^(@))/(sin70^(@)sin85^(@))+(cos70^(@))/(sin 25^(@)sin85^(@))+(cos85^(@))/(sin25^(@)sin70^(@)) is

Without using trigonometric tables evaluate. ("sin"65^(@))/("cos"25^(@))+("cos"32^(@))/("sin"58^(@))-"sin"28^(@)."sec"62^(@)+"cosec"^(2)30^(@)

Evaluate : cos ""(pi)/(8) sin ""(pi)/(8)

Evaluate : (sin^(2)30^(@)+sin^(2)45^(@)-4cot^(2)60^(@))/(2sin30^(@)cos30^(@)+(1)/(2)tan60^(@))

Find the value of : " "(sin30^(@)-sin90^(@)+2cos0^(@))/(tan30^(@) times tan60^(@))

With out using tables, evaluate : 4 tan 60^(@) sec 30^(@) + (sin 31^(@) sec 59^(@) + cot 59^(@) cot 31^(@))/(8 sin^(2) 30^(@) - tan^(2) 45^(@))