Home
Class 9
MATHS
Evaluate : 14 sin 30^(@)+6cos 60^(@)-5...

Evaluate :
`14 sin 30^(@)+6cos 60^(@)-5tan 45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 14 \sin 30^\circ + 6 \cos 60^\circ - 5 \tan 45^\circ \), we will evaluate each trigonometric function step by step. ### Step 1: Evaluate \( \sin 30^\circ \) We know that: \[ \sin 30^\circ = \frac{1}{2} \] ### Step 2: Substitute \( \sin 30^\circ \) into the expression Now substitute \( \sin 30^\circ \) into the expression: \[ 14 \sin 30^\circ = 14 \times \frac{1}{2} = 7 \] ### Step 3: Evaluate \( \cos 60^\circ \) Next, we evaluate: \[ \cos 60^\circ = \frac{1}{2} \] ### Step 4: Substitute \( \cos 60^\circ \) into the expression Now substitute \( \cos 60^\circ \) into the expression: \[ 6 \cos 60^\circ = 6 \times \frac{1}{2} = 3 \] ### Step 5: Evaluate \( \tan 45^\circ \) We know that: \[ \tan 45^\circ = 1 \] ### Step 6: Substitute \( \tan 45^\circ \) into the expression Now substitute \( \tan 45^\circ \) into the expression: \[ 5 \tan 45^\circ = 5 \times 1 = 5 \] ### Step 7: Combine all parts of the expression Now we combine all the evaluated parts: \[ 14 \sin 30^\circ + 6 \cos 60^\circ - 5 \tan 45^\circ = 7 + 3 - 5 \] ### Step 8: Simplify the expression Now simplify: \[ 7 + 3 = 10 \] \[ 10 - 5 = 5 \] ### Final Answer Thus, the final answer is: \[ \boxed{5} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEMENTARY ANGLES

    ICSE|Exercise EXERCISE |64 Videos
  • CO-ORDINATE GEOMETRY

    ICSE|Exercise QUESTIONS|12 Videos
  • COMPOUND INTEREST

    ICSE|Exercise TOPIC 2 (4 Marks Questions)|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate : (i) sin^(2)30^(@)-2cos^(3)60^(@)+3tan^(4)45^(@) (ii) (cos0^(@)+sin45^(@)+sin30^(@))(sin90^(@)-cos45^(@)+cos60^(@))

Evaluate : [{:(,4 sin 30^@ 2 cos 60^@), (,sin 90^@ 2 cos 0^@):}] [{:(,4,5),(,5,4):}]

Evaluate : (tan45^(@))/(2sin30^(@)-cos60^(@))

Evaluate : sin ^(2)60^(@)tan 45^(@)- cos^(2)45^(@)sec 60^(@)

Evaluate sin(30^(@)+theta)-cos(60^(@)-theta) .

Find the value of : (i) sin 30^(@)-cos 60^(@) (ii) sin 0^(@)+cos 0^(@)

Find the value of : (i) sin 30^(@)+cos 60^(@) (ii) sin 0^(@)-cos 0^(@)

With out using tables, evaluate : 4 tan 60^(@) sec 30^(@) + (sin 31^(@) sec 59^(@) + cot 59^(@) cot 31^(@))/(8 sin^(2) 30^(@) - tan^(2) 45^(@))

Find the value of (sin30^(@))/(cos^(2)45^(@))-tan^(2)60^(@)+3cos90^(@)+sin0^(@) .