Home
Class 9
MATHS
In each case given below, find the value...

In each case given below, find the value of angle A where `0^(@)leAle90^(@)`
(i) `sin(90^(@)-3A).cosec42^(@)=1`
(ii) `cos(90^(@)-A).sec77^(@)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problems, we will use the properties of complementary angles and trigonometric identities. ### Problem (i): Given the equation: \[ \sin(90^\circ - 3A) \cdot \csc(42^\circ) = 1 \] **Step 1: Use the identity for sine of a complementary angle.** Using the identity \(\sin(90^\circ - x) = \cos(x)\), we can rewrite the equation: \[ \cos(3A) \cdot \csc(42^\circ) = 1 \] **Step 2: Rewrite cosecant in terms of sine.** Recall that \(\csc(x) = \frac{1}{\sin(x)}\), so we have: \[ \cos(3A) \cdot \frac{1}{\sin(42^\circ)} = 1 \] **Step 3: Rearrange the equation.** Multiplying both sides by \(\sin(42^\circ)\): \[ \cos(3A) = \sin(42^\circ) \] **Step 4: Use the identity for cosine.** Since \(\cos(3A) = \sin(90^\circ - 3A)\), we can also express this as: \[ \cos(3A) = \sin(42^\circ) \] **Step 5: Set up the equation.** We can set up the equation: \[ 3A = 90^\circ - 42^\circ \] \[ 3A = 48^\circ \] **Step 6: Solve for A.** Dividing both sides by 3: \[ A = \frac{48^\circ}{3} = 16^\circ \] ### Problem (ii): Given the equation: \[ \cos(90^\circ - A) \cdot \sec(77^\circ) = 1 \] **Step 1: Use the identity for cosine of a complementary angle.** Using the identity \(\cos(90^\circ - x) = \sin(x)\), we can rewrite the equation: \[ \sin(A) \cdot \sec(77^\circ) = 1 \] **Step 2: Rewrite secant in terms of cosine.** Recall that \(\sec(x) = \frac{1}{\cos(x)}\), so we have: \[ \sin(A) \cdot \frac{1}{\cos(77^\circ)} = 1 \] **Step 3: Rearrange the equation.** Multiplying both sides by \(\cos(77^\circ)\): \[ \sin(A) = \cos(77^\circ) \] **Step 4: Use the complementary angle identity.** Since \(\cos(77^\circ) = \sin(90^\circ - 77^\circ)\): \[ \sin(A) = \sin(13^\circ) \] **Step 5: Set up the equation.** Since both angles are acute, we can equate: \[ A = 13^\circ \] ### Final Answers: (i) \( A = 16^\circ \) (ii) \( A = 13^\circ \)
Promotional Banner

Topper's Solved these Questions

  • COMPLEMENTARY ANGLES

    ICSE|Exercise EXERCISE |64 Videos
  • CO-ORDINATE GEOMETRY

    ICSE|Exercise QUESTIONS|12 Videos
  • COMPOUND INTEREST

    ICSE|Exercise TOPIC 2 (4 Marks Questions)|12 Videos

Similar Questions

Explore conceptually related problems

In each case, given below, find the value of angle A, where 0^(@) le A le 90^(@) sin (90^(@) - 3A) . cosec 42^(@) = 1

In each case, given below, find the value of angle A, where cos (90^(@) - A) . sec 77^(@) = 1

Find (in each case, given below) the value of x, if : sin 3 x = 2 sin 30^(@) cos 30^(@)

Find A, if 0^(@) le A le 90^(@) and : 4 sin^(2) A - 3 = 0

Find A, if 0^(@) le A le 90^(@) and : sin 3 A - 1 = 0

Given: cos 38^(@)sec(90^(@)-2A)=1, find the value of angle A.

Given: cos 38^(@)sec(90^(@)-2A)=1, find the value of angle A.

Find the value of : (tan45^(@))/(cosec30^(@))+(sec60^(@))/(cot45^(@))-(5sin90^(@))/(2cos0^(@))

If sin3A=1 and 0 le A le 90^(@) , find : sin A

If sin3A=1 and 0 le A le 90^(@) , find : sin A