Home
Class 10
MATHS
Solve for x : 4(x-(1)/(x))^(2)+8(x+(1)/(...

Solve for x : `4(x-(1)/(x))^(2)+8(x+(1)/(x))=29`. `x ne 0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 4\left(x - \frac{1}{x}\right)^{2} + 8\left(x + \frac{1}{x}\right) = 29 \), we will follow these steps: ### Step 1: Rewrite the equation Start by rewriting the equation: \[ 4\left(x - \frac{1}{x}\right)^{2} + 8\left(x + \frac{1}{x}\right) - 29 = 0 \] ### Step 2: Expand the square Using the identity \( (a - b)^2 = a^2 - 2ab + b^2 \), we can expand \( \left(x - \frac{1}{x}\right)^{2} \): \[ \left(x - \frac{1}{x}\right)^{2} = x^{2} - 2 + \frac{1}{x^{2}} \] Thus, we have: \[ 4\left(x^{2} - 2 + \frac{1}{x^{2}}\right) + 8\left(x + \frac{1}{x}\right) - 29 = 0 \] ### Step 3: Substitute and simplify Let \( t = x + \frac{1}{x} \). Then, we can express \( x^{2} + \frac{1}{x^{2}} \) in terms of \( t \): \[ x^{2} + \frac{1}{x^{2}} = t^{2} - 2 \] Substituting this into the equation gives: \[ 4(t^{2} - 2) + 8t - 29 = 0 \] Simplifying: \[ 4t^{2} - 8 + 8t - 29 = 0 \] \[ 4t^{2} + 8t - 37 = 0 \] ### Step 4: Solve the quadratic equation Now we will solve the quadratic equation \( 4t^{2} + 8t - 37 = 0 \) using the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] Here, \( a = 4, b = 8, c = -37 \): \[ t = \frac{-8 \pm \sqrt{8^{2} - 4 \cdot 4 \cdot (-37)}}{2 \cdot 4} \] Calculating the discriminant: \[ b^{2} - 4ac = 64 + 592 = 656 \] Thus: \[ t = \frac{-8 \pm \sqrt{656}}{8} \] \[ t = \frac{-8 \pm 8\sqrt{41}}{8} \] \[ t = -1 \pm \sqrt{41} \] ### Step 5: Find \( x \) Now we have two cases for \( t \): 1. \( t = -1 + \sqrt{41} \) 2. \( t = -1 - \sqrt{41} \) For each case, we will solve for \( x \): \[ x + \frac{1}{x} = t \implies x^{2} - tx + 1 = 0 \] #### Case 1: \( t = -1 + \sqrt{41} \) \[ x^{2} - (-1 + \sqrt{41})x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{(-(-1 + \sqrt{41})) \pm \sqrt{(-1 + \sqrt{41})^{2} - 4}}{2} \] #### Case 2: \( t = -1 - \sqrt{41} \) \[ x^{2} - (-1 - \sqrt{41})x + 1 = 0 \] Using the quadratic formula: \[ x = \frac{(-(-1 - \sqrt{41})) \pm \sqrt{(-1 - \sqrt{41})^{2} - 4}}{2} \] ### Final Step: Calculate the roots Calculating the roots for both cases will yield the final values of \( x \).
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATIONS

    ICSE|Exercise Exercise 5(A)|5 Videos
  • QUADRATIC EQUATIONS

    ICSE|Exercise Exercise 5(B)|5 Videos
  • PROBABILITY

    ICSE|Exercise EXERCISE 25(C)|106 Videos
  • QUESTION PAPER 2019

    ICSE|Exercise SECTION B |20 Videos

Similar Questions

Explore conceptually related problems

Solve for x:((x+1)(x-2))/(x-4)=0

Solve for x : 2^(2x+1) = 8

Solve for x : 4^(x-1)xx(0.5)^(3-2x)=((1)/(8))^(-x)

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

Solve : ((x)/(x+2))^(2)-7((x)/(x+2))+12=0, x ne -2 .

Solve for x : (x-1)/(x-2)+(x-3)/(x-4)=3 1/3;\ \ x!=2,\ 4

Solve for x:2^(x+2) gt (1/4)^(1/x)

The solution set of (x+(1)/(x) ) ^2 -3/2 (x-(1)/(x)) =4 when x ne 0 is

Solve for : 1/(x-3)+2/(x-2)=8/x ; x!=0,2,3

Solve for x :4^x-3^(x-1//2)=3^(x+1//2)-2^(2x-1) .